Stereoselective synthesis of 1,3-enynyltellurides via palladium catalysed cross-coupling reaction of (E)-α-iodovinyltellurides Mingzhong Cai* and Junmin Chen

Department of Chemistry, Jiangxi Normal University, Nanchang 330027, P.R.China

(E)- α -lodovinyltellurides undergo a direct coupling reaction with terminal alkynes in the presence of [Pd(PPh₃)₄] and Cul catalysts in pyrrolidine at room temperature to give 1,3-enynyltellurides in good yields.

Keywords: 1,3-enynyltelluride, (E)- α -iodovinyltelluride, cross-coupling reaction, stereoselective synthesis

The discovery of strong antifungal agents¹ and new powerful antitumor antibiotics² has stimulated intense interest in the chemistry of enynes,³ which is at the origin of the biological properties of these substances. The conjugated enynes are also important synthetic intermediates since the conjugated enyne moiety can be readily converted in a stereospecific manner into the corresponding diene system.⁴ The synthesis of 1,3-enynes containing functional groups is of considerable interest in recent years. The stereoselective synthesis of 1,3-enynylsulfides,⁵ 1,3enynylselenides,⁶ 1,3-enynylsilanes⁷ and 1,3-enynylstannanes⁸ has already been described in the literature. However, synthesis of 1,3-enynyltellurides has received less attention⁹ and the 1,3enynyltellurides with the tellurenyl group attached between the double and triple bonds has not been reported.

The transition metal-catalysed cross-coupling reaction is a highly versatile method for carbon–carbon bond formation and has been widely used as synthetic tool.¹⁰ The palladiumcatalysed coupling reaction of alkenyl halides with terminal alkynes (Sonogashira reaction) provides a direct route to 1,3-enynes.¹¹ Here, we report that 1,3-enynyltellurides could be conveniently synthesised by the coupling reaction of (E)- α -iodovinyltellurides with terminal alkynes in the presence of [Pd(PPh₃)_{*d*}] and CuI catalysts (Scheme 1).

The required starting (E)- α -iodovinyltellurides **1** were prepared in good yields by the hydrozirconation of alkynyltellurides and successive reaction with iodine.¹² We observed that when (E)- α -iodovinyltellurides **1** were allowed to react directly with terminal alkynes **2** in the presence of 5 mol% of [Pd(PPh₃)₄] and 10 mol% of CuI in pyrrolidine at room temperature for 2 h, 1,3-enynyltellurides **3** were obtained stereoselectively in good yields. The typical results are summarised in Table 1.

Table 1	Synthesis o	of 1.3-envn	vltellurides	3a-i
	0,		,	

R	R ¹	R ²	Product	Yield/%ª
n-C₄H ₉	n-C₄H ₉	<i>n</i> -C₄H ₉	3a	72
$n-C_4H_9$	$n-C_4H_9$	Ph	3b	81
$n-C_4H_9$	$n-C_4H_9$	CH ₃ OCH ₂	3c	78
<i>n</i> -C ₆ H ₁₃	$n-C_4H_9$	n-C ₆ H ₁₃	3d	73
<i>n</i> -C ₆ H ₁₃	$n-C_4H_9$	Ph	3e	68
<i>n</i> -C ₆ H ₁₃	$n-C_4H_9$	CH ₃ OCH ₂	3f	64
$n-C_4H_9$	Ph	CH ₃ OCH ₂	3g	62
Ph	<i>n</i> -C₄H ₉	n-C₄H ₉	3ĥ	65
Ph	<i>n</i> -C ₄ H ₉	Ph	3i	87

alsolated yield based on the (E)- α -iodovinyltelluride **1** used.

The products **3** were identified by ¹H NMR, IR spectra and elemental analyses. The double bond geometries of the products **3** were determined by the treatment of (Z)-1-phenyl-2-butyltelluro-4-phenyl-1-buten-3-yne at -78 °C with butyllithium in THF followed by hydrolysis with sat. aq. NH₄Cl to produce (E)-1,4-diphenyl- 1-buten-3-yne **4** (Scheme 2).¹³ The stereochemistry of product **4** was easily established, since the ¹H NMR spectrum of product **4** gives rise to two doublets at δ 6.30 and δ 7.01 with coupling constant of 16 Hz, typical of *trans* positioned protons. The experimental results showed that the palladium catalysed cross-coupling reaction of (E)- α iodovinyltellurides with terminal alkynes occurred with total retention of configuration.

In conclusion, we have developed a novel approach to the stereoselective synthesis of 1,3-enynyltellurides by the crosscoupling reaction of (E)- α -iodovinyltellurides with terminal alkynes in the presence of [Pd(PPh₃)₄] and CuI. The reactions have the advantages of mild conditions, short reaction times, simple manipulation and good yields.

Scheme 2

* Correspondence. E-mail: caimingz@tom.com

Experimental

[ZrCp₂(H)Cl] and alkynyltellurides were prepared according to the literature, respectively.^{14,15} ¹H NMR spectra were recorded on a Bruker AC-400 (400 MHz) spectrometer with TMS as an internal standard. IR spectra were obtained on a Perkin-Elmer 683 instrument as neat films. Microanalyses were measured using a Yanaco MT-3 CHN microelemental analyzer. Tetrahydrofuran (THF) was freshly distilled from sodium-benzophenone prior to its use. Pyrrolidine was dried, deoxygenated and freshly distilled before use.

General procedure for the synthesis of (E)- α -iodovinyltellurides 1: To a mixture of [ZrCp₂(H)Cl] (2.0 mmol) in THF (6.0 ml) under Ar, a solution of the corresponding alkynyltelluride (1.0 mmol) in THF (3.0 ml) was added via a syringe. The reaction mixture was stirred at room temperature for 30 min. Then, the resulting dark red mixture formed was treated at room temperature with a solution of iodine (3.0 mmol) in THF (5.0 ml), transferred via a syringe. The stirring was continued for an additional 30 min, the mixture was diluted with ethyl acetate (10 ml), 95% ethanol (10 ml) and water (5 ml) and finally NaBH₄ (3.0 mmol) was added to remove the electrophile excess and to perform the dehalogenation of the tellurium atom. After this treatment the product was extracted with ethyl acetate (5×30 ml) and washed with water (5×50 ml), the organic layer was dried over MgSO₄ and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography using hexane as eluent.

(*E*)-1-Iodo-1-butyltelluro-1-hexene: yield 64%: IR (film)/cm⁻¹ 2957, 2923, 2869, 2818, 1582, 1464, 1377; $\delta_{\rm H}$ (CDCl₃) 7.02 (t, *J* = 7.2 Hz, 1H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.08–1.96 (m, 2H), 1.87–1.75 (m, 2H), 1.48–1.29 (m, 6H), 0.97–0.87 (m, 6H); Anal. Calcd for C₁₀H₁₉TeI: C, 30.5; H, 4.9. Found: C, 30.8; H, 4.8.

(*E*)-*1*-*I*odo-*1*-*butyltelluro-1*-octene: yield 66%: IR (film)/cm⁻¹ 2958, 2922, 2870, 2819, 1580, 1463, 1378; $\delta_{\rm H}$ (CDCl₃) 6.71 (t, *J* = 7.2 Hz, 1H), 2.79 (t, *J* = 7.2 Hz, 2H), 2.26–2.21 (m, 2H), 1.85–1.76 (m, 2H), 1.45–1.28 (m, 10H), 0.95–0.86 (m, 6H); Anal. Calcd for C₁₂H₂₃TeI: C, 34.2; H, 5.5. Found: C, 33.9; H, 5.6.

(*E*)-1-Iodo-1-phenyltelluro-1-hexene: yield 68%: IR (film)/cm⁻¹ 3058, 3019, 2957, 2873, 1595, 1490, 1464, 1377; δ_H (CDCl₃) 7.77-7.67 (m, 2H), 7.40-7.21 (m, 3H), 7.10 (t, J = 7.2 Hz, 1H), 2.13–2.06 (m, 2H), 1.44–1.28 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H); Anal. Calcd for C₁₂H₁₅Tel: C, 34.8; H, 3.7. Found: C, 35.0; H, 3.7.

General procedure for the synthesis of 1,3-enynyltellurides **3a-i**: To a solution of [Pd(PPh₃)₄] (0.05 mmol, 0.058g) and CuI (0.1 mmol, 0.019g) in pyrrolidine (2 ml) at 0 °C under Ar, was added the terminal alkyne (2.0 mmol) and after stirring at r.t. for 10 min, a solution of α -iodovinyltelluride (1.0 mmol) in pyrrolidine (1 ml) was added with stirring. The reaction mixture was stirred at r.t. for another 2 h, hydrolysed with sat. aq. NH₄Cl (10 ml) and extracted with Et₂O (2×20 ml). The organic layer was washed with sat. aq NH₄Cl (15 ml) and water (2×15 ml) and dried (MgSO₄). Removal of the solvent under reduced pressure gave an oil, which was purified by column chromatography on silica gel using hexane or hexane/ether (20:1)(for **3c**, **3f**, **3g**) as eluent.

(Z)-6-Butyltelluro-5-dodecen-7-yne (**3a**): IR (film)/cm⁻¹ 2957, 2930, 2872, 2860, 2221, 1587, 1465, 1435, 1378,743, 696; $\delta_{\rm H}$ (CDCl₃) 6.14 (t, J = 7.6 Hz, 1H), 2.91 (t, J = 7.6 Hz, 2H), 2.49 (t, J = 7.2 Hz, 2H), 2.13–2.04 (m, 2H), 1.88–1.79 (m, 2H), 1.56–1.21 (m, 10H), 0.97–0.82 (m, 9H); Anal. Calcd for C₁₆H₂₈Te: C, 55.2; H, 8.1. Found: C, 54.9; H, 7.9.

(Z)-1-Butyl-2-butyltelluro-4-phenyl-1-buten-3-yne (**3b**): IR (film)/ cm⁻¹ 3020, 2979, 2874, 2401, 1599, 1446, 1383, 1216, 909, 771, 669; $\delta_{\rm H}$ (CDCl₃) 7.43–7.41 (m, 2H), 7.31–7.26 (m, 3H), 6.45 (t, J = 7.2 Hz, 1H), 3.01 (t, J = 7.6 Hz, 2H), 2.18–2.13 (m, 2H), 1.89– 1.84 (m, 2H), 1.49–1.17 (m, 6H), 0.94–0.85 (m, 6H); Anal. Calcd for C₁₈H₂₄Te: C, 58.7; H, 6.5. Found: C, 58.4; H, 6.4.

(Z)-1-Butyl-2-butyltelluro-5-methoxy-1-penten-3-yne (**3c**): IR (film)/ cm⁻¹ 2957, 2927, 2872, 2249, 1689, 1464, 1376, 1186, 1098, 908, 733; $\delta_{\rm H}$ (CDCl₃) 6.38 (t, J = 6.8 Hz, 1H), 4.29 (s, 2H), 3.39 (s, 3H), 2.92 (t, J = 7.6 Hz, 2H), 2.14–2.08 (m, 2H), 1.89–1.78 (m, 2H), 1.45–1.21 (m, 6H), 0.96–0.82 (m, 6H); Anal. Calcd for C₁₄H₂₄OTe: C, 50.0; H, 7.1. Found: C, 49. 8; H, 7.0.

(Z)-8-Butyltelluro-7-hexadecen-9-yne (3d): IR (film)/cm⁻¹ 2956, 2924, 2855, 2205, 1590, 1462, 1435, 1377, 885, 723; $\delta_{\rm H}$ (CDCl₃) 6.26 (t, J = 7.6 Hz, 1H), 2.91 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.2 Hz,

2H), 2.10–2.02 (m, 2H), 1.87–1.78 (m, 2H), 1.58–1.20 (m, 18H), 0.97–0.78 (m, 9H); Anal. Calcd for $\rm C_{20}H_{36}Te:$ C, 59.4; H, 8.9. Found: C, 59.2; H, 8.8.

 $\begin{array}{l} (Z)\mbox{-}1\mbox{-}Hexyl\mbox{-}2\mbox{-}butyl\mbox{telluro\mbox{-}4\mbox{-}phenyl\mbox{-}1\mbox{-}buten\mbox{-}3\mbox{-}yne\mbox{-}(3e)\mbox{: IR (film)/} \\ cm\mbox{-}1\mbox{-}3064,\mbox{-}2958,\mbox{-}2927,\mbox{-}2872,\mbox{-}2856,\mbox{-}2318,\mbox{-}1667,\mbox{-}1594,\mbox{-}1487,\mbox{-}1464,\mbox{-}1442,\mbox{-}1378,\mbox{-}688;\mbox{-}645,\mbox{-}21378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}688;\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}=7.2\mbox{-}Hz,\mbox{-}1442,\mbox{-}1378,\mbox{-}645,\mbox{(fi}\mbox{-}J\mbox{-}142,\mbo$

 $\begin{array}{l} (Z)\mbox{-}1\mbox{-}Hexyl\mbox{-}2\mbox{-}butyl\mbox{telluro-}5\mbox{-}methoxy\mbox{-}1\mbox{-}penten\mbox{-}3\mbox{-}yne\mbox{(3f)}: IR (film)/\mbox{cm}^{-1}\mbox{2956},\mbox{2925},\mbox{2871},\mbox{2855},\mbox{2202},\mbox{1463},\mbox{1377},\mbox{1353},\mbox{1186},\mbox{1098},\mbox{786};\mbox{\delta}_{H}\mbox{(CDCl}_{3}\mbox{6},\mbox{38}\mbox{(t, } J=7.2\mbox{ Hz},\mbox{1H}\mbox{)},\mbox{4.29}\mbox{ (s, 2H)},\mbox{3.39}\mbox{ (s, 3H)},\mbox{2.93}\mbox{ (t, } J=7.2\mbox{ Hz},\mbox{2H}\mbox{)},\mbox{2.93}\mbox{(t, } J=7.2\mbox{ Hz},\mbox{2H}\mbox{)},\mbox{2.93}\mbox{ (t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{ (t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{ (t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{ (t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{ (t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{(t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{(t, } J=7.2\mbox{ Hz},\mbox{2.93}\mbox{(t, } J=7.2\mbox{1.93}\mbox{1.93}\mbox{1.94}\mbox{1.94}\mbox{2.94}\mbox{1.94}\mbox{2.9$

(Z)-1-Butyl-2-phenyltelluro-5-methoxy-1-penten-3-yne (**3g**): IR (film)/cm⁻¹ 3056, 3024, 2956, 2870, 2857, 2139, 1597, 1572, 1487, 1442, 1180, 1026, 754, 691; $\delta_{\rm H}$ (CDCl₃) 7.38–7.24 (m, 5H), 6.43 (t, J = 7.2 Hz, 1H), 4.20 (s, 2H), 3.42 (s, 3H), 2.25–2.17 (m, 2H), 1.47–1.34 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H); Anal. Calcd for C₁₆H₂₀OTe: C, 53.9; H, 5.6. Found: C, 53.7; H, 5.5.

(Z)-1-Phenyl-2-butyltelluro-1-octen-3-yne (**3h**): IR (film)/cm⁻¹ 3065, 2923, 2818, 2317, 1599, 1574, 1473, 1371, 732, 691; $\delta_{\rm H}$ (CDCl₃) 7.54–7.26 (m, 6H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.49 (t, *J* = 7.6 Hz, 2H), 1.88–1.80 (m, 2H), 1.47–1.21 (m, 6H), 0.95–0.84 (m, 6H); Anal. Calcd for C₁₈H₂₄Te: C, 58.7; H, 6.5. Found: C, 58.5; H, 6.3.

 $\begin{array}{l} (Z)\mbox{-}1,\mbox{-}1\mbox{-}2\mbox{-}buty\mbox{-}tel\mbox{-}1\mbox{-}buty\mbox{-}tel\mbox{-}3\mbox{-}yne\mbox{-}(3i): IR\mbox{-}(film)\mbox{/}cm^{-1}\mbox{-}3056,\mbox{-}3024,\mbox{-}2957,\mbox{-}2925,\mbox{-}2194,\mbox{-}1596,\mbox{-}1488,\mbox{-}1440,\mbox{-}754,\mbox{-}689;\mbox{-}\delta_{\rm H}\mbox{-}(CDCl_3)\mbox{-}7.53\mbox{-}7.23\mbox{-}(m,\mbox{-}10{\rm H}),\mbox{-}7.17\mbox{-}(s,\mbox{-}1{\rm H}),\mbox{-}3.08\mbox{-}(t,\mbox{-}J=7.6\mbox{-}Hz,\mbox{-}2{\rm H}),\mbox{-}1.42\mbox{-}1.42\mbox{-}1.36\mbox{-}(m,\mbox{-}2{\rm H}),\mbox{-}3.08\mbox{-}(t,\mbox{-}J=7.6\mbox{-}Hz,\mbox{-}2{\rm H}),\mbox{-}1.42\mbox{-}1.42\mbox{-}1.36\mbox{-}(m,\mbox{-}2{\rm H}),\mbox{-}0.89\mbox{-}(t,\mbox{-}J=7.2\mbox{-}Hz,\mbox{-}3{\rm H}),\mbox{-}1.42\mb$

Synthesis of (E)-1,4-diphenyl-1-buten-3-yne (4): To a solution of (Z)-1,4-diphenyl-2-butyltelluro-1-buten-3-yne (3i) (1.0 mmol) in THF (5.0 ml) was added BuLi (1.6 M hexane solution, 1.1 mmol) at -78 °C. After stirring for 1 h, the mixture was hydrolysed with sat. aq NH₄Cl and extracted with Et₂O (2×30 ml). The ethereal solution was washed with water (2×15 ml), dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane) and recrystallised (EtOH) to afford enyne 4 (0.168g, 82%); M.p. 96–97 °C (lit.¹⁶ M.p. 96–97 °C); $\delta_{\rm H}$ (CDCl₃) 7.67–7.11 (m, 10H), 7.01 (d, J = 16 Hz, 1H), 6.30 (d, J = 16 Hz, 1H).

We thank the National Natural Science Foundation of China (Project No. 20062002) and the Natural Science Foundation of Jiangxi Province (Project No. 0420015) for financial support.

Received 19 August 2004; accepted 20 October 2004 Paper 04/2730

References

- A. Stutz, Angew. Chem., Int. Ed. Engl., 1987, 26, 320;
 P. Nussbaumer, L. Leitner, K. Mraz and A. Stutz, J. Med. Chem., 1995, 38, 1831.
- 2 A.G. Myers, P.J. Proteau and T.M. Handel, J. Am. Chem. Soc., 1988, 110, 7212.
- R. Aksela and A.C. Oehlschlager, *Tetrahedron*, 1991, 47, 1163;
 P. Magnus, A. Hirokazo and J. Harling, *J. Org. Chem.*, 1990, 55, 1709;
 S. Ikeda and Y. Sato, *J. Am. Chem. Soc.*, 1994, 116, 5975;
 M. Alami, S. Gueugnot, E. Domingues and G. Linstrumelle, *Tetrahedron*, 1995, 51, 1209.
- 4 P.A. Magriotis and K.D. Kim, J. Am. Chem. Soc., 1993, 115, 2972; J.A. Miller and G. Zweifel, J. Am. Chem. Soc., 1983, 105, 1383; E.J. Corey and A. Tramontano, J. Am. Chem. Soc., 1984, 106, 462.
- 5 M. Koreeda and W. Yang, Synlett, 1994, 201.
- A.L. Braga, G. Zeni, L.H. Andrade, C.C. Silveira and H.A. Stefani, Synthesis, 1998, 39; Y. Ma and X. Huang, Synth. Commun., 1997, 27, 3441; M.Z. Cai, C.Y. Peng, H. Zhao and J.D. Huang, J. Chem. Res., 2002, 376.
- 7 N. Chatani, N. Amishiro and S. Murai, J. Am. Chem. Soc., 1991, 113, 7778; M. Cai, W. Hao, H. Zhao and C. Song, J. Chem. Res., 2003, 485.
- 8 X. Huang and P. Zhong, J. Chem. Soc., Perkin Trans. 1, 1999, 1543; M. Cai, H. Zhao, H. Ye, J. Xia and C. Song, J. Chem. Res., 2003, 344.

- 9 X. Huang and Y.P. Wang, *Tetrahedron Lett.*, 1996, **37**, 7417.
- 10 A. Suzuki, Pure Appl. Chem., 1985, 57, 1749; T. N. Mitchell, Synthesis, 1992, 803.
- 11 K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, 4467; M. Alami and G. Linstrumelle, *Tetrahedron Lett.*, 1991, **32**, 6109.
- 12 M.J. Dabdoub, M.L. Begnini and P.G. Guerrero, *Tetrahedron*, 1998, **54**, 2371.
- 13 M.J. Dabdoub and V.M. Dabdoub, *Tetrahedron*, 1995, **51**, 9839.
- 14 J. Schwarts and J.A. Labinger, Angew. Chem., Int. Ed. Engl., 1976, 15, 333.
- 15 M.J. Dabdoub and J.V. Comasseto, *Organometallics*, 1988, 7, 84.
- 16 F. Marcuzzi, U. Azzena and G. Melloni, J. Chem. Soc., Perkin Trans.1, 1993, 2957